Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            A<sc>bstract</sc> A search for the production of a single top quark in association with invisible particles is performed using proton-proton collision data collected with the CMS detector at the LHC at$$\sqrt{s}=13$$TeV, corresponding to an integrated luminosity of 138 fb−1. In this search, a flavor-changing neutral current produces a single top quark or antiquark and an invisible state nonresonantly. The invisible state consists of a hypothetical spin-1 particle acting as a new mediator and decaying to two spin-1/2 dark matter candidates. The analysis searches for events in which the top quark or antiquark decays hadronically. No significant excess of events compatible with that signature is observed. Exclusion limits at 95% confidence level are placed on the masses of the spin-1 mediator and the dark matter candidates, and are compared to constraints from the dark matter relic density measurements. In a vector (axial-vector) coupling scenario, masses of the spin-1 mediator are excluded up to 1.85 (1.85) TeV with an expectation of 2.0 (2.0) TeV, whereas masses of the dark matter candidates are excluded up to 0.75 (0.55) TeV with an expectation of 0.85 (0.65) TeV.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            A search for flavor-changing neutral current interactions of the top quark ( ) and the Higgs boson ( ) is presented. The search is based on proton-proton collision data collected in 2016–2018 at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, and corresponding to an integrated luminosity of . Events containing a pair of leptons with the same-sign electric charge and at least one jet are considered. The results are used to constrain the branching fraction ( ) of the top quark decaying to a Higgs boson and an up ( ) or charm ( ) quark. No significant excess above the estimated background was found. The observed (expected) upper limits at a 95% confidence level are found to be 0.072% (0.059%) for and 0.043% (0.062%) for . These results are combined with two other searches performed by the CMS Collaboration for flavor-changing neutral current interactions of top quarks and Higgs bosons in final states where the Higgs boson decays to either a pair of photons or a pair of bottom quarks. The resulting observed (expected) upper limits at the 95% confidence level are 0.019% (0.027%) for and 0.037% (0.035%) for .more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            A<sc>bstract</sc> A search is performed for dark matter (DM) produced in association with a single top quark or a pair of top quarks using the data collected with the CMS detector at the LHC from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to 138 fb−1of integrated luminosity. An excess of events with a large imbalance of transverse momentum is searched for across 0, 1 and 2 lepton final states. Novel multivariate techniques are used to take advantage of the differences in kinematic properties between the two DM production mechanisms. No significant deviations with respect to the standard model predictions are observed. The results are interpreted considering a simplified model in which the mediator is either a scalar or pseudoscalar particle and couples to top quarks and to DM fermions. Axion-like particles that are coupled to top quarks and DM fermions are also considered. Expected exclusion limits of 410 and 380 GeV for scalar and pseudoscalar mediator masses, respectively, are set at the 95% confidence level. A DM particle mass of 1 GeV is assumed, with mediator couplings to fermions and DM particles set to unity. A small signal-like excess is observed in data, with the largest local significance observed to be 1.9 standard deviations for the 150 GeV pseudoscalar mediator hypothesis. Because of this excess, mediator masses are only excluded below 310 (320) GeV for the scalar (pseudoscalar) mediator. The results are also translated into model-independent 95% confidence level upper limits on the visible cross section of DM production in association with top quarks, ranging from 1 pb to 0.02 pb.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            The first search for a heavy neutral spin-1 gauge boson ( ) with nonuniversal fermion couplings produced via vector boson fusion processes and decaying to tau leptons or bosons is presented. The analysis is performed using LHC data at , collected from 2016 to 2018 with the CMS experiment and corresponding to an integrated luminosity of . The data are consistent with the standard model predictions. Upper limits are set on the product of the cross section for production of the boson and its branching fraction to or . The presence of a boson decaying to ( ) is excluded for masses up to 2.45(1.60) TeV, depending on the boson coupling to standard model weak bosons, and assuming a ( ) branching fraction of 50%.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            We report an improved measurement of the valence and quark distributions from the forward-backward asymmetry in the Drell-Yan process using of data collected with the D0 detector in collisions at . This analysis provides the values of new structure parameters that are directly related to the valence up and down quark distributions in the proton. In other experimental results measuring the quark content of the proton, quark contributions are mixed with those from other quark flavors. In this measurement, the and quark contributions are separately extracted by applying a factorization of the QCD and electroweak portions of the forward-backward asymmetry. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            Free, publicly-accessible full text available June 1, 2026
- 
            PRD (Ed.)A search for heavy neutral gauge bosons ( ) decaying into a pair of tau leptons is performed in proton-proton collisions at at the CERN LHC. The data were collected with the CMS detector and correspond to an integrated luminosity of . The observations are found to be in agreement with the expectation from standard model processes. Limits at 95% confidence level are set on the product of the production cross section and its branching fraction to tau lepton pairs for a range of boson masses. For a narrow resonance in the sequential standard model scenario, a boson with a mass below 3.5 TeV is excluded. This is the most stringent limit to date from this type of search. © 2025 CERN, for the CMS Collaboration2025CERNmore » « lessFree, publicly-accessible full text available June 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
